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ABSTRACT

A new stability parameter, “u(S),” is defined for
linear 2-port circuits. It is shown that g > 1 alone is
necessary and sufficient for the circuit to be uncondition-
ally stable. This single parameter can replace the tradi-
tional Rollet condition K > 1 which requires that an
additional auxiliary condition also be met for absolute
stability.

1. INTRODUCTION

Alinear 2-port circuit is said to be absolutely, or uncon-
ditionally, stable if there is no passive source, Il's| < 1, and
passive load, I['; | < 1, combination that can cause the circuit
to oscillate. It has been shown [9], [2], [3] that the combina-
tion of the Rollett [7] condition

K= 1-184, 2 -1S,,  +1A12
2181551

>1 o))

together with any one of the following auxiliary conditions
is necessary and sufficient for unconditional stability.

B, = 141S,,2 IS, 2 1A% > 0 (2a)
B, = 1-1S;;P +IS» P 1P > 0 (2b)
IAI=1S;S5 — S1255;1<1 (2)
1-18,2 >18,,S,,1 (2d)
1150, P >18,,5,! (2e)

The design of active circuits requires that multiple
parameters be evaluated over a wide frequency range much
larger than their intended pass-band. If a circuit or a device
fails to meet these conditions, it is difficult to assess the
degree of potential instability that exists since the values
associated with (1) and (2) provide little direct physical
insight into the degree of stability or lack thereof.

A New Approach

The input and output reflection coefficient are related to
the load and source reflection coefficient by the well known
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linear fractional transformation which maps circles into
circles (where a straight line is the special case of a circle
containing the point o) [12]

S15So T}
I =f =8y +o12221 L
in =fIL) =Sy T-Spl, (3a)
and ST
r = =S 12921 LA
ou = 8(Ts) 218, L. (3b)

Theinverses,I'; =f -}, ), andTg=g ~1(T',,), are well
defined provided that §,,S,, #0

$11-T

I =4 )=—011""in_

L f (rln) A_Szzrin (Sc)
Sy -T,

e = ~1 T 22 out

s=8 (Tow) A-ST.. (3d)

Consequently, the approach in this paper is to initially
assume that the circuit is not unilateral and then to examine
the unilateral case afterwards.

A circuit is unconditionally stable if the function “f”
maps the unit disk in the I'; -plane into the unitdisk in the T, -
plane (see figure 1). This is equivalent to saying that the
inverse £ ~! maps the unit disk in the T", -plane onto a region
which contains the unit disk in the I'; -plane. Note that the
unit disk is a set of complex reflection coefficient whose
magnitude is less than one. This is exactly the region repre-
sented by the conventional or passive Smith Chart denoted in
this paper as USC standing for Unit Smith Chart. Because of
the circle preserving property of linear fractional transfor-
mations the inverse mapping could typically look either like
figure 1b or 1c. These functional characteristics and their
analytical representation form the basis for defining the new
measure of stability.

A new parameter, “u,” will be defined based upon the
mapping “f.” It will be shown that the value of p alone,
unambiguously determines if the circuit is unconditionally
stable or potentially unstable. A dual parameter designated
u’ can be defined based upon the mapping “g” and it also
uniquely determines whether the circuit is unconditionally
stable. This approach also provides direct physical insight
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into the degree to which the Unit Smith Chart, USC, is
encroached by possible unstable loads and source regions
providing the engineer with a measure of the risk or margin
associated with his design.

Complex Representation of a Disk

(or Disk Complement)
The following inequality

122 —za-z"a" <b @

where a is acomplex number and bis areal number such that
a2+ b= 0, describes a circular disk of complex points
whose center is C =a*, | C | = ¢, and whose radius is

=b+lal.

This is seen by adding the term | a 12 to both sides of (4)
and manipulating the results to get

lz—a'l<Vb+lal.

If the “less than” sign in (4) were reversed to be a
“greater than” sign then

Iz—a*I>/b+lal?

which describes a region external to the above defined disk.
This external region is referred to therefore as a “disk
complement.”
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2. DEFINING THE NEW STABILITY FACTOR p

The new parameter, u, is defined as the minimum
distance in the I'; -plane between the origin of the Unit Smith
Chart USC and the unstable region. A negative value for this
miss distance parameter indicates that the unstable region
overlaps the origin of USC. It turns out that u is described by
a relatively simple expression whose analytical form is the
same regardless of whether the inverse mapping, f -1, is of
the type illustrated by figure 1b, or figure 1c.

It will now be shown that the mapping “f -1, illustrated
in figures (1b) and (1c), will occur if and only if the distance
u(S) > 1. This will be argued by showing that these mappings
imply that u(S) > 1 and then justifying the reversibility of the
steps. The above statement is equivalent to the following
mathematical statement

[usce{run = (rc)l] @ u)>1 )

The range of the map f ~1( IT'; 1< 1), is determined by
If(I'))I < 1. Straight forward substitution from (3a) yields

ITL P (15, ~IAP ]+ T{ [8,,4" ~ 83, |
+TL[STiA =S5 |18, P -1,
Dividing this expression by ISzzI2— 1A12, one obtains the

complex variable representation of a disc or disc
complement (see (4)) depending on whether or not
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18p12-1A412<00r18,,12-1A12> 0. The resulting
inequalities are as follows,

Sy —SpA° 1S,Sp,!
r, ——2 11 2112
LTS, P—1aR | 1P 1S, P ©)
where IS, 1A < 0
and
S, — Sy A" 1SS!
—— e D e >—_
LIS, P AP |~ 1S, P 1 AP 0

where IS, 1AP > 0.

The circle defined by replacing the inequalities in (6)
and (7) with an equal sign is commonly referred to as a
stability circle. The formulation resulting in (6) and (7)
preserves the information about which region is the stable
one.

One must now consider what is required for the USC to
be contained in the range of the mapping f ! as illustrated in
figures 1b and Ic.

Case 1: 1S,,P-IAP>0

In this case the range of our mapping in the I'; plane is
the region outside the circle defined by (7) and must be of the
type illustrated in figure 1b. Itis clear that USC is contained
in the locus of points if and only if

c—-r>1

®
where
¢ =thedistance from the center of the Smith Chart to the
center of the disk complement
r = the radius of the disk complement
Substituting the values for ¢ and r from (7) into (8),

IS;2 =SyA"| 1858yl
ISP —14P | 1S, -14P
It is now important to note that the denominator of the

expression forc must be positive since IS,,/>- 1A12> 0. So one
can simplify this expression as follows

1S5y — S11A1-185,S;,!
1Sy, P —1412

Case 2: ISP -1AR<0

In this case the range of the mapping “f ~1” is the region
inside the disk defined by (6) and must be of the type
illustrated in figure 1c. Itis clear that USC is contained in this
locus of points if and only if

>1 )

r-c>1 (¢10)]
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Substituting the values for ¢ and r from (6) into (10),

1518151 55 = SyA

AP —18,, P 15,2 —1AF

It is now important to note that the denominator of the
expression for ¢ must be negative since 1 S,,1%-1A12<0.
So one can simplify this expression as follows

1S,,8,! _|s;2-suA"|>1
AP -1S,P 1A IS, P

By reordering the terms in the denominator, one arrives
at the following result

IS5, — $1;A1-185,5, 1
1S5, P —1AP
It is important to note that (11) is identical to (9), and
thus a single, stability parameter emerges regardless of the
value of IS,,2- 1A%,
The apparent singularity presented by the denominator
of (11) can be eliminated and the expression further simpli-
fied by noting that

>1 an

IS,, — AS} P —18,,81, P

— 2
T =18, -1AP

(12)

Factoring the numerator of (12) which is the difference of
two squares and substituting IS,,P- IAP from (12) into (11)
yields,

l_',slllz >1.
|822 - ASuI + |SZISIZI

H (13)

It is interesting to note that the case where
IS,,2~ A1 = 0 results in a stability circle which is a straight
line but presents no difficulty with (13).

All steps taken above have been completely reversible,
so it has been shown that the mapping “f -1”, illustrated in
figures (1b) and (1c), will occur if and only if u(S) > 1.

3. PROOF THAT p > 1 < UNCONDITIONAL
STABILITY

In order to prove that x> 1 if and only if unconditional
stability exists, it must first be shown that the mapping “f”
illustrated in figure 1a implies that

K>1 (14a)

1-15,12>18,8,,| (14b)

The range of the mapping of f ( IT';_ 1< 1) is determined
bylf 'l(I‘in) 1< 1. Solving for T, , one obtains the following,



IT;,  [125 2 ~1]+ T[], - $54°]
* * 15
+T5[S11 - S14]>18;, P -1aP (15)
It is now desirable to divide both sides of (15) by
IS,,P%— 1. If IS, 1 > 0, the range of the mapping “f” would
be a disk complement and contradictory to the assumption
that the mapping is that illustrated in figure 1a. Therefore,
IS5,%- 1 < 0. Dividing (15) by IS,,P- 1 and simplifying as
iltustrated in (4), one obtains

_8;,-55A
1-1S,, #

[1-15,P]
By noting that this mapping results in a disc that lies

inside the USC in the I'; plane (see figure 1a), we see that
¢ + 1< 1 and moving r to the right hand side yields

in

(16)

ISy, —~ S5, Al 1S,:S,!
11 222 <1- P21 122 a7
1185, 1 148551
Since the left side of (17) is greater than or equal to zero,
then

1S, S

21712

l<1-1S,12 (18)

Furthermore, squaring both sides of (17) and substituting
1Sy, — A3, P =188, P +[1-18 o 2 11, -187 ] (19)
into the result yields

1-18,, 2 —18,, # + AP
2158y,

All of the steps taken from (15) to (20) are completely
reversible, so it has been shown that the mapping “f” illus-

K= >1

20)

trated in figure 1a implies that
K>1
1-1S,12>1S8,S 1

This is exactly the two conditions of (1) and (2¢) which
are known to be necessary and sufficient for unconditional
stability of a linear 2-port. Thus it has been shown that > 1
if and only if a 2-port network is unconditionally stable.

We now look at the unilateral case of u. It is clear by
substitution that

148, 2

unilateral) = ——————
l TN TTRTNY

@n

so it is immediately obvious that p > 1 if and only if
IS5, <1and IS,l < 1, which are the necessary and sufficient
conditions for unconditional stability of a unilateral circuit.
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4. DEFINITION OF THE DUAL PARAMETER '

Another parameter, u’, can be defined based on the
mapping function “g” in (3) and likewise p’ > 1 if and only
if a 2-port network is unconditionally stable. The dual
parameter is given by

ye 1-1S,,
1817 — AS3, 1 418,55

22

This further implies that u(S) > @ u'(S) > 1.

5. CONCLUSIONS

It has been shown that a single parameter, u, exists that
isnecessary and sufficient to show unconditional stability of
any 2-port network. A companion parameter, ', also exists
and is necessary and sufficient to show unconditional stabil-
ity of any 2-port as well. A comparison of the new stability
parameter (u or p') for S-parameter values that satisfy or
violate the traditional stability conditions (1) and (2) has
been done and is left as an exercise for the reader.
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